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Functional Evidence of Persistent Airway
Obstruction in Rats Following a Two-Hour
Inhalation Exposure to Methyl Isocyanate

by Michael A. Stevens,* Shelley Fitzgerald,* Margaret G.
Ménache,* Daniel L. Costa,’ and John R. Bucher?

Pulmonary function was assessed in male, F344 rats 1,2,4,7, and 13 weeks after a single 2-hr exposure
to 0, 3, 10, or 30 ppm methyl isocyanate. No significant changes were observed in the rats exposed to 3
ppm through 13 weeks. Diffusing capacity (DL.,), quasistatic lung compliance, and homogeneity of ven-
tilation, as determined by multibreath nitrogen washout, were depressed in the rats exposed to 10 and 30
ppm by 1 week after exposure. None of the rats exposed to 30 ppm survived beyond 1 week, By 13 weeks,
dramatic increases in lung volumes were observed in the rats exposed to 10 ppm, while DL, and lung
compliance were only mildly affected. However, volume-specific DL, and compliance were depressed in
the rats exposed to 10 ppm, suggesting that lung hyperinflation or other compensatory means of increasing
lung size occurred in response to the methyl isocyanate-induced lung lesion. This group also exhibited
increased expiratory times during tidal breathing and severely impaired distribution of ventilated air.
Collectively, these results suggest the development and likely progression of a severe, obstructive airway
lesion with associated gas trapping, and the existence of a pronounced concentration-response relationship
between 3 and 10 ppm methyl isocyanate exposures.

Introduction

Methyl isocyanate (MIC) is a highly reactive chemical
used in the production of various widely used carbamate
pesticides. In December 1984, a large quantity of MIC
was accidentally released into the atmosphere over Bho-
pal, India, killing or injuring several hundred thousand
individuals. The role of this chemical as a pulmonary
toxicant, not only to those who were exposed and may
or may not recover, but also to those living in areas
where the potential for exposure exists, has stimulated
considerable scientific investigation.

MIC has been shown to be severely irritating to mu-
cous membranes (1), causing marked bronchospasm and
asthmalike breathing when inhaled (2). Recent studies
have demonstrated that MIC is a potent sensory and
pulmonary irritant in mice (3). Additionally, reports
from Bhopal indicate that many survivors of the MIC
release display symptoms of lung disease with both re-
strictive and obstructive components (4). However, a
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comprehensive evaluation of the effects after exposure
of MIC on pulmonary function has not been performed.
In an attempt to ascertain the functional sequelae of
a single MIC exposure in the mammalian lung, we meas-
ured lung function in rats periodically for 3 months after
exposure using a battery of pulmonary function tests.

Methods

Animals and Exposures

Male, 6- to 10-week-old F344 rats (Charles River,
Kingston, NY) were divided into four treatment groups:
one filtered-air control group, and three groups that
received a single, 2-hr exposure to 3, 10, or 30 ppm MIC
on April 27, 1985. Specific details of the exposure system
and these particular exposures are reported elsewhere
(5). After exposure, the animals were transferred to
standard plastic holding cages and given food and water
ad libitum until testing.

Pulmonary Function

Pulmonary function was evaluated 1, 2, 4, 7, and 13
weeks after exposure. The techniques used to measure
lung function were similar to those previously reported
(6,7). Before testing began, the animals were anesthe-
tized with sodium pentobarbitol (50 mg/kg body weight,
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IP) and tracheostomized. An appropriately sized (14—
16 G) Luer stub adapter (Becton Dickinson, Rutherford,
NJ) was then inserted and tied into the trachea.

For lung measurements, the animals were placed in
an acrylic whole-body plethysmograph with a three-po-
sition slide valve (dead space 0.3 mL) that facilitated
switching between two gas sources and a pressure
transducer. End expiratory volume (EEV) was calcu-
lated from airway and plethysmographic recordings by
using an application of Boyle’s Law or computed by
using measured nitrogen dilution. Vital capacity (VC)
was measured between airway pressures of —15 and
+ 30 em H,0. Single-breath diffusing capacity to carbon
monoxide (DL,,) and residual volume (RV) were meas-
ured by using gas dilution techniques previously de-
scribed (8). Total lung capacity (TLC) was computed as
the sum of VC and RV. Respiratory system compliance
(C,s) was calculated by a nonlinear least-squares fit of
the deflation portion of the quasi-static pressure-volume
curve (9). A multiple-breath nitrogen washout maneu-
ver at fixed tidal volume and frequency was performed
by calculating the slope of the log end-tidal nitrogen
concentration vs. breath number (N, slope) while the
animal was ventilated with 100% oxygen.

After completion of the pulmonary function measure-
ments, the animals were exsanguinated, the lungs re-
moved, and the heart and mediastinal tissue dissected.
After measuring the wet lung weight, the lungs were
dried for 24 hr at 40°C at an inflation pressure of 30 cm
H,0. Dry lung weights were then recorded and percent
lung water was calculated as

_ | Wet lung weight — dry lung weight
% = [ Wet lung weight X 100

Data Collection

Analog output from the individual conditioned trans-
ducer signals was digitized and stored on floppy disks
using a PDP 11/23+ microcomputer system (Digital
Equipment Corporation, Maynard, MA). The digitized
data were analyzed by using Fortran 77 programs de-
veloped in this laboratory. Further statistical analyses
employed the SAS statistical package.

Statistics

The analysis of covariance (ANCOVA) was used to
examine the effects of exposure on the individual pul-
monary function parameters over time. Where no time
trend existed, the data were analyzed by use of a one-
way analysis of variance (ANOVA) and William’s sub-
test to determine the lowest effective MIC concentra-
tion. If a time trend was observed, an appropriate
regression model (linear or quadratic) was fit, and tests
of parallelism among the concentration levels were per-
formed. If the treatment regression models were par-
allel, differences among concentration levels were de-
termined using a least significant differences test. When

models were not parallel, the slopes for each concen-
tration level were tested for equality to one another
using {-tests.

Additionally, one-way ANOVAs were performed at
1 week after exposure. Because the animals exposed to
30 ppm died soon after this time point, it was impossible
to perform the time-trend analyses described above. All
data presented in the accompanying table and figures
are means = SEM, where the asterisk (*) denotes sig-
nificant difference from control (p < 0.05).

Results and Discussion

Assessment of lung function in the rats exposed to
30 ppm MIC is reported only for 1 week after exposure,
as none of these animals survived to the 2-week time-
point. There were no deaths in the 0-, 3-, or 10-ppm
groups.

Body weights were depressed by 33% at 1 week after
exposure in rats exposed to 30 ppm MIC, and by an
average of 14% in the animals exposed to 10 ppm at all
time points. Several measures of lung volume were dra-
matically increased by 10-ppm MIC exposure. TLC was
increased to 120% of control 4 weeks after exposure and
to 140% of control by 13 weeks (Fig. 1). Residual volume
increased to nearly three times control at 1 week after
exposure and remained elevated during each exami-
nation after exposure (Fig. 2). EEV, as computed by
Boyle’s law, increased to 180% of control at 1 week after
exposure and remained markedly elevated through 13
weeks (Fig. 34). VC was only midly affected by MIC
exposure.

DL.,, which serves as an index of the efficiency of
alveolar gas diffusion, was significantly depressed at 1
week following exposure in the 30-ppm group. Simi-
larly, DL,, in the rats exposed to 10 ppm was also de-
pressed at 1 and 2 weeks after exposure. Thereafter,
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FIGURE 1. Total lung capacity in rats exposed to (®) 0 ppm, (0) 3

ppm, (®) 10 ppm, or 30 ppm (results identical to rats exposed to
10 ppm at 1 week) MIC for 2 hr. The asterisk (*) denotes significant
difference (p < 0.05) from control.
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FIGURE 2. Residual volume as a percent of total lung capacity in
rats exposed to (®) 0 ppm, (0) 3 ppm, (@) 10 ppm, or 30 ppm (results
identical to rats exposed to 10 ppm at 1 week) MIC for 2 hr. The
asterisk (*) denotes significant difference (p < 0.05) from control.
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FIGURE 3. (A) End expiratory volume as determined by Boyle’s

Law and (B) expiratory volume as determined by nitrogen wash-
out in rats exposed to (@) 0 ppm, (0) 3 ppm, (@) 10 ppm, or 30 ppm
(results identical to rats exposed to 10 ppm at 1 week) MIC for 2
hr. The asterisk (*) denotes significant difference (p < 0.05) from
control.

in both groups, DL., was unchanged from control
through 13 weeks. Although it appears that the diffus-
ing capacity of the lung returned to control values, this
recovery coincided with the abnormal increase of TLC.
As aresult, the diffusing capacity/unit lung volume (spe-
cific diffusing capacity) remained depressed at 17% be-
low control in the rats exposed 10-ppm throughout the
entire experiment (Fig. 4). This suggests that the rats
exposed to 10 ppm MIC were able to maintain overall
gas-diffusing homeostasis by increasing lung volumes
and, probably, the correlated lung surface area. This
phenomenon of elevating lung volumes to maintain gas
exchange has been demonstrated in rats after inhalation
exposure to volcanic ash (9), in rats 1 year after intra-
tracheal administration of bleomycin (10) and in rats
exposed subchronically to acrolein (11). Additionally,
young rats exposed to a hypoxic environment, where
available oxygen would be initially inadequate, exhib-
ited elevated TLCs similar to the increases we presently
report (12). These authors also morphometrically dem-
onstrated an increase in the size and/or number of al-
veolar structures. Another study of hypoxia showed
that comparable increases in TLC resulted in elevated
DL, values (13). Whether a similar mechanism is in-
volved with increasing TLCs in the MIC-exposed ani-
mals, however, is unknown. Morphometric evaluations
of these lungs will be performed to address this possi-
bility more adequately.

Measurements of intrapulmonary gas distribution, as
determined by the slope of the nitrogen washout curve,
indicated marked dysfunction in the efficiency of ven-
tilation distribution in the animals exposed to 10 and 30
ppm. However, this measure may have been influenced
by the large increases in EEV observed in these rats.
To adjust for this phenomenon, nitrogen washout curves
were reanalyzed using the slope of expired nitrogen
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FIGURE 4. Lung diffusing capacity of carbon monoxide normalized
to total lung capacity (in em®) in rats exposed to () 0 ppm, (0) 3
ppm, (@) 10 ppm, or 30 ppm (results identical to rats exposed to
10 ppm at 1 week) MIC for 2 hr. The asterisk (*) denotes significant
difference (p < 0.05) from control.
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concentration vs. the cumulative expired volume nor-
malized to EEV (CEV slope). The results of this analy-
sis revealed that rats exposed to 10 ppm MIC exhibited
a consistent 40% depression in CEV slope through the
entire 13 weeks after exposure (Fig. 5), indicating in-
efficient communication between lung compartments
and subsequent inhomogeneous distribution of venti-
lated air. One explanation for this observation is the
presence of trapped intrapulmonary air beyond dam-
aged airways.

We indirectly tested for the presence of trapped gas
in the lung by comparing the measure of EEV calculated
by Boyle’s Law to the EEV derived during the nitrogen
washout analysis. The Boyle’s Law method computes
EEV based on pressure and volume changes, and ac-
counts for all of the gas present in the thorax at the
time of the measurement. The nitrogen washout method
is based on the dilution of nitrogen and is most accurate
when there is unobstructed communication between the
airways and the nitrogen analyzer. Air trapped beyond
an obstruction would not be included in this calculation,
so the actual EEV would be underestimated. A com-
parison of Figures 3A and 3B illustrates this effect. At
each time point, EEV in the animals receiving 10 ppm
exposure was consistently higher when calculated by
the Boyle’s Law method than it was if the nitrogen
washout method was used.

Given the highly reactive and water-soluble nature
of MIC, a reasonable explanation for the trapped air in
the lungs of these animals is an airway obstruction re-
lated to bronchiolar inflammation and scarring. The in-
creased lung volume, a secondary effect, resulted pos-
sibly as an attempt to maintain adequate gas exchange.
Consistent with this airway lesion hypothesis is the in-
crease in average expiratory times measured during
resting, tidal breathing. Although total breath and in-
spiratory times were unchanged with MIC exposure,
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FiGURE 5. Slope of the multibreath nitrogen washout curve nor-
malized for changes in EEV (see discussion) in rats exposed to (®)
0 ppm, (0) 3 ppm, (W) 10 ppm, or (T) 30 ppm MIC for 2 hr. The
asterisk (*) denotes significant difference (p < 0.05) from control.

the symmetry of breathing was altered in the animals
exposed to 10 ppm, so that expiration was consistently
prolonged by an average to 10 to 20% throughout the
course of the experiment. Continued evidence of airway
impairment is seen 6 months after exposure to 10 ppm
MIC where forced expiratory flows, a sensitive index
of airway dysfunction, are significantly reduced (14).

Widespread parenchymal destruction, with resultant
abnormal intrapulmonary spaces, could be an alterna-
tive explanation for the presence of trapped gas, de-
pressed specific diffusing capacities, and increased lung
volumes. However, histologic examination of lung tis-
sue from the rats exposed to 10 ppm indicated very little
alveolar impairment, while the most pronounced dam-
age was manifest as initial, complete destruction of air-
way epithelium (25).

The distensibility of the lung, indicated by C,,, was
depressed by 24% in the rats exposed to 30 ppm and
9% in the rats exposed to 10 ppm when compared to
control at 1 week after exposure, but was unchanged
from control throughout the remaining 13 weeks. Vol-
ume-specific compliance (C,./mL), however, was con-
sistently depressed by 25% at all time points in the
animals exposed to 10 ppm (Fig. 6). This is a reflection
of the tremendous increase in RV in these animals and
may indicate that portions of the lung were not con-
tributing to the compliance measurement.

Both wet and dry lung weights of the rats exposed
to 10 ppm were significantly elevated above control dur-
ing the 13 weeks after exposure (Table 1). The relatively
small increase in percent lung water (approximately 2%)
rules out the presence of widespread edema in these
lungs. Regression analysis reveals that the lung weights
of these animals increased at a higher rate than those
of control rats throughout the 13-week study period.
This may indicate progressive hypercellularity in the
lungs of these animals due to chronic inflammatory re-
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FIGURE 6. Respiratory system compliance normalized to total lung
capacity (in em®) in rats exposed to (®) 0 ppm, (0) 3 ppm, (®) 10
ppm, or (0) 30 ppm MIC for 2 hr. The asterisk (*) denotes signif-
icant difference (p < 0.05) from control.



Table 1. Mean wet and dry lung weights and percent lung water (+ SEM) in rats 1, 2, 4, 7, and 13 weeks after a single 2-hr exposure
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to 0, 3, 10, or 30 ppm MIC.

MIC exposure concentration

Time after exposure,
weeks Measurement 0 ppm 3 ppm 10 ppm 30 ppm
1 Lung wet, g 0.845 + 0.017 0.837 = 0.011 0.976 + 0.061* 0.830 + 0.044
Lung dry, g 0.194 = 0.004 0.192 = 0.003 0.218 + 0.011 0.186 + 0.011
Lung H,0, % 77.10 +0.27 77.09 +0.14 71.63 +0.34 77.63 +0.34
2 Lung wet, g 0.861 = 0.028 0.878 = 0.019 1.164 + 0.044* —
Lung dry, g 0.208 = 0.008 0.213 = 0.006 0.253 + 0.008* —
Lung H.0, % 76.10 +0.38 75.64 =+ 0.89 78.19 =+ 0.51* —
4 Lung wet, g 0.975 = 0.022 0.968 = 0.023 1.315 + 0.066* —
Lung dry, g 0.236 + 0.008 0.239 + 0.007 0.297 + 0.010* —
Lung H,0, % 75.82 +0.26 75.35 +0.32 77.29 + 0.51* —
7 Lung wet, g 1.043 = 0.022 1.008 = 0.024 1.360 = 0.058* —
Lung dry, g 0.262 = 0.005 0.256 + 0.007 0.321 + 0.001* —
Lung H;0, % 73.82 +0.24 74.59 +0.27 76.23 =+ 0.36* —
13 Lung wet, g 1.218 + 0.030 1.138 + 0.034 1.701 + 0.156* —
Lung dry, g 0.319 = 0.009 0.289 + 0.010 0.403 + 0.033* —
Lung H,0, % 73.82 +0.24 74.59 *0.27 76.23 + 0.36* —
* Significant difference (p <0.05) from control.
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